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Abstract

This paper documents the development and application of a general statistical
methodology to assess the accuracy of baseline energy models, focusing on its
application to Measurement and Verification (M&V) of whole-building energy savings.
The methodology complements the principles addressed in resources such as ASHRAE
Guideline 14 and the International Performance Measurement and Verification
Protocol. It requires fitting a baseline model to data from a ““training period” and using
the model to predict total electricity consumption during a subsequent “prediction
period.”

We illustrate the methodology by evaluating five baseline models using data from 29
buildings. The training period and prediction period were varied, and model predictions
of daily, weekly, and monthly energy consumption were compared to meter data to
determine model accuracy. Several metrics were used to characterize the accuracy of
the predictions, and in some cases the best-performing model as judged by one metric
was not the best performer when judged by another metric.

Keywords: baseline model; prediction; measurement and verification; energy savings;
performance accuracy; whole-building energy



1. Introduction

There is growing recognition that whole-building-focused approaches to energy
efficiency hold great promise in realizing deep and persistent energy savings in
commercial buildings. Owners, property and facility managers, and utility incentive
programs are increasingly adopting and piloting multi-measure strategies that move
beyond traditional component-based or one-time commissioning or retrofit
interventions; the industry is seeing a movement toward continuous energy
improvement practices that may include efforts such as ongoing commissioning,
strategic energy management, and operational optimization, as well as retrofits and the
implementation of advanced control and information technologies [1].

Measurement and verification of energy savings can be conducted in a number of ways,
as defined in the International Performance Measurement and Verification Protocol
(IPMVP) [2]. Savings may be determined based on isolation of a retrofit or efficiency
measure, or based on more broadly encompassing measurements of metered whole-
building energy use, before and after the improvement. In theory, whole-building
approaches, which often combine energy management processes with efficient
technologies, and information technologies, would naturally lend themselves to
measured, whole-building savings quantification, as opposed to measure-specific or
calculated savings. Historically, however, whole-building Measurement and Verification
(M&V) has relied upon monthly utility data, and therefore monthly baseline models, in
which smaller levels of savings could be easily obscured due to model error. The IPMVP
recommends that whole-building savings quantification be applied in cases where the
expected savings are greater than ten percent, and where at least twelve months of pre-
and post-data is available [2].

Today, the advent of increasingly available interval meter data has enabled the
development of more robust baseline models, than the monthly models that have
traditionally been used to characterize whole-building energy performance. In addition,
whole-building approaches to efficiency have the potential to generate deeper energy
savings than single-measure approaches. Moreover, many of the technologies included
in whole-building efficiency strategies, such as energy information systems (EIS) and
ongoing commissioning systems, not only enable energy savings of up to twenty percent
[3], but include baselining functionality that can be used to automatically quantify
savings according to the principles of IPMVP Option C [4, 5].

Although whole-building efficiency programs, interval meter data, and enabling building
information technologies hold great promise in realizing deep energy savings in the
commercial buildings sector, several questions relating to savings quantification remain
to be answered: What metrics should be used to quantify the performance of these
tools? Does interval data reduce the time required for measurement and verification
relative to that required when using utility billing data? How accurate are baseline
models based on interval meter data? Are savings of approximately ten percent, still



required for an acceptable degree of certainty in reported savings? How can proprietary
tools that automate gross M&YV be evaluated? This paper documents research findings
that begin to address these questions. We present a statistical methodology to evaluate
the predictive accuracy of baseline energy models used for whole-building savings
quantification, and apply the methodology to assess the performance of five specific
models. These models range from simple to more sophisticated, and include a
proprietary model included in a commercial EIS offering.

While resources such as the IPMVP and ASHRAE Guideline 14, establish procedural and
guantitative requirements for baseline model construction, goodness of fit to data
during the model training period, and rules of thumb for model application given
different expected depths of savings, they do not provide a general means of assessing
model performance during a prediction period. The methodology presented in this work
extends the principles in these existing resources to quantify model predictive accuracy
after the training period, and suggests key performance metrics to quantify model
accuracy in the context of whole-building M&V. Lengthy periods of interval meter data
from several dozen buildings are collated to form a ‘test’ data set, and statistical cross-
validation is performed to gauge performance relative to the M&V-focused metrics, and
diverse time scales of interest.

This methodology shares important similarities to the approaches used in the ASHRAE
‘shootouts’ of the mid and late 1990s [6; 7]. In both cases, cross-validation is used to
determine model error, and in both cases, normalized root mean squared error is
included as a performance metric. However, the ASHRAE shootouts were limited to data
from a total of three buildings, and the cross-validation was conducted only during a
short subset of the model training period. Also, the ASHRAE shootouts focused on
hourly quantifications of energy use, whereas in this study we consider daily, weekly,
and monthly energy predictions. The ASHRAE competitions considered total energy use
from a sum of submetered quantities, but the demonstration in this study is limited to
data and models of whole building electric metering: that is the only meter data that
was available in our dataset, and is all that is readily available in most buildings .

An important feature of this work is that the methodology can be used to objectively
assess the predictive accuracy of a model, without needing to know the specific
algorithm, or underlying form of the model. Therefore, proprietary tools can be
evaluated while protecting the developer’s commercial intellectual property. In
addition, it provides a general approach to evaluate the errors in calculated energy
savings, according to diverse pre- and post-measure time horizons, and large test sets of
building energy data.

2. Methodology

The methodology developed to assess baseline prediction accuracy comprises four
steps, as illustrated in Figure 1. This 4-step methodology represents a statistical
approach called ‘cross-validation’, in which the model is fit using one set of data, the



‘training data’, and then used to predict future consumption data that were not
included in fitting the model. Measures of model fit are then quantified and compared.

In steps one and two, energy use predictions from baseline models of interest are
generated. In steps three and four, the predictive ability of each baseline model is
guantified, and the relative performance of each is evaluated.

(Step 1)

Vary baseline
inputs:

Baseline training pd
- 6mo, 9mo, 1yr

Bldg characteristics
- load variability,
size, climate

(Step 2)

(Step 3)

(Step 4)

Proprietary Model

Standard models:
Change-point, mean-
week, day-time-temp

LBNL model

(Step 1)

Metered energy use,
data for indep. vars

(Step 2)

Quantify performance of
predicted use vs. actual:

Statistical metrics
- Correl. coefficient
- Normalized RMSE
- Relative total error
- Relative bias
- Quantiles of Residuals

Vary prediction bounds:
- Energy quantity
(daily, weekly,
monthly use)

- Prediction horizon
(10,7, 4-mo)

Interpret results,
evaluate models:

Model performance
relative to
- Training period
- Prediction horizon
- Predicted energy
quantity
- Each other

(Step 3)

(Step 4)

Figure 1: Schematic representation of the 4-step model evaluation methodology, and specific
parameters used in demonstrating the methodology in this study.

In Step 1, two parameters are varied to determine the predictive performance of the
baseline models across a diversity of conditions — the model training period, and the
characteristics of the buildings included in the analysis.

1. Baseline training period - the amount of data used to build the model

In demonstrating the methodology, each model was trained using weather data
and metered whole-building electric demand data from a 6-, 9-, and 12-month
period. We used hourly outdoor air temperature data and hourly electricity
consumption. In all cases the start of the training period was at the beginning of
the building load data, which was January 1 in 14 of the buildings; various days in
April in 12 of the buildings; and February, August, and September in the other
three. In principle the entire analysis would be repeated using different start
months in each building. For the dataset used in this report, which has only
sixteen months of data available for most of the buildings, our ability to do this
would have been very limited.

2. Building characteristics

16 months of metered electric data from 29 buildings was used in the
demonstration of the methodology. For each set of data, according to all
indications, no energy efficiency measures (EEMs) had been implemented, and



the operation of the building was unchanged, representing a ‘constant’ set of
energy use conditions. These buildings are located in a variety of climates and
geographic locations. The set of 29 buildings is largely comprised of commercial
offices, but does include a small number of non-office buildings. A summary of
building characteristics is provided in Appendix C, for sites where the
information was available.

In Step 2, baseline models and predictions are generated. Metered energy consumption
data and associated independent variables are used to fit each baseline model. Once the
fit is determined, data for the independent variables, measured during the prediction
period are used to generate model-predicted energy use for each building. The models
used to demonstrate the methodology are detailed in Section 2.1; the independent
variables they require include outside air temperature, and time of day or week.

In Step 3 the performance of each baseline model is characterized according to a
number of statistical performance metrics, and prediction bounds. The prediction
bounds are varied according to two parameters:
1. The quantity being predicted
In demonstrating the methodology, models were developed from hourly interval
meter and weather data, and then aggregated into daily, weekly, and monthly
energy use predictions.

2. The prediction horizon - how far into the future predictions are made
Prediction horizons are varied based on the length of data in the test data set, and the
time periods of most interest for the evaluation application. In this demonstration, 16
months of metered energy use data were available for each of the 29 buildings. Since
the training periods were fixed to 6, 9, and 12 months, the associated prediction
horizons were 10, 7, and 4 months, respectively. The specific performance metrics that
were used in the evaluation are detailed in Section 2.2.

In Step 4 of the evaluation methodology, the performance of each model is interpreted
according to the set of statistical metrics computed in Step 3.

According to this construction, the model ‘training” or ‘fit’ data is analogous to the pre-
measure period in M&V applications, and the prediction period is analogous to the post-
measure, or savings period. Model fithess measures to the metered data from the
prediction period, then relate to the ultimate error incurred in applying the model to
qguantify savings, in the general case.

For this study, five baseline models were assessed according to the performance
evaluation methodology, and the results were used to compare the models relative to
one another, and in an absolute sense. The parameters that were explicitly considered
in the performance evaluation were the baseline training period, the prediction horizon,
and the unit of prediction, i.e., daily, weekly, and monthly energy use. Due to limitations



on the number of cases that could be analyzed under the scope of the study, hourly
predictions were not considered.

2.1 Baseline Models

Five baseline models were chosen to demonstrate the methodology, and to explore
guestions of predictive accuracy under a set of varied training and prediction horizons.
These five models include public domain methods commonly used in the industry, as
well as a model developed by researchers at Lawrence Berkeley National Laboratory
(LBNL), and a proprietary model used in a commercial EIS offering; a simplistic ‘naive’
model was also included to serve as a comparative ‘floor’ on performance.

In the mean-week (MW) model, the predictions depend on day and time only. For
example, the prediction for Tuesday at 3 PM is the average of all of the data for
Tuesdays at 3 PM. Therefore, there is a different load profile for each day of the week,
but not, for example, for each week in a month or each month in the year.

Change-point (CP) models were the industry-standard before the advent of widely
available interval meter data, and do not include time. Detailed in [8; 9], these models
relate energy use to ambient temperature, according to a piecewise-continuous
temperature response, with up to three temperature ranges. For this study, the change
points were chosen by optimization, allowing up to five temperature ranges, each with
its own temperature response. The change point temperatures were determined so as
to minimize the predictive error (not necessarily to represent physical significance),
subject to the constraint that change points must be at least 2 C (4 F) apart.

The day-time-temperature (DTT) regression model includes time of day, day of week,
and two temperature variables to allow different heating and cooling slopes. The
temperature variables were defined as the number of degrees C below 10 C (50 F), and
the number of degrees above 18 C (65 F). The use of time-of-day and day-of-week
variables is described in [10], in the context of more complicated regression models that
include special handling of, e.g., humidity and holidays.

The proprietary model (Propr) is offered in a commercially available energy information
system (EIS). The model predicts the electric load at a given time as a weighted average
of energy use at other times, giving higher statistical weight to data when times and
conditions were similar to the given time than to other data, where “similarity” is
defined according to a proprietary algorithm that takes into account the time of day,
day of the week, outdoor air temperature, and other variables if provided [4].

The LBNL model, described in [11], is a regression model that includes time of week,
and a piecewise-continuous temperature response with fixed change points that were
set to 7, 13, 18, 24, and 29 C (45, 55, 65, 75, and 85 F). Separate regressions were fit for
‘occupied’ and ‘unoccupied’ periods of the day. The determination of unoccupied and
occupied periods was made by fitting a linear regression model with two explanatory



variables, degrees below 10 C (50 F) and degrees above 18 C (65 F), and aggregating the
results by time of the week: a time period was defined to be ‘occupied’ if most of the
residuals from the simple model were positive (i.e., the building used more energy than
predicted), otherwise it was defined as ‘unoccupied’.

2.2 Differences between the models
There are several sources of temporal variation in building load that affect the
performance of each model.

1. Daily and weekly periodicity (such as high load Wednesday afternoon, low load
Sunday night); this is very large for most buildings, typically accounting for more
than 70% of the variance in hourly load.

2. Temperature-dependence; this is small but not negligible for most buildings,
accounting for 5-15% of the variance in hourly load.

3. Other variation not explained above, such as variation due to changes in
occupant behavior, in the lighting or equipment used in the building, in the
number of occupants, and so on. This variability is small for most buildings (less
than 15%), but moderate for others and large (more than 50%) for a few.

The mean-week model captures only number 1, the regular variation of hourly load that
occurs every week. The change-point model explicitly captures only number 2, the
temperature-dependence; however, because the outdoor air temperature is higher
during the day than at night, the hourly load predictions from this model also captures
some of the daily load pattern in most buildings.

The LBNL model, day-time-temperature model, and proprietary model capture both
number 1 and number 2. None of the models capture number 3, or can hope to do so,
since this is variation that is not predicted by any explanatory variable available to the
model.

2.3 Baseline Model Performance Metrics
The statistical performance metrics that are included in the baseline model evaluation
methodology are collectively referred to as ‘goodness-of-fit’ metrics. Those most
relevant to whole-building M&V applications, and referenced in ASHRAE Guideline 14
are described below; additional metrics also considered in development of the
methodology are included in Appendix A.

The normalized root mean squared error (NRMSE) is the RMSE divided by the mean of
the data. This metric also quantifies the typical size of the error, but does so relative to
the mean of the data; for instance, a value of 0.1 means errors are typically about 10%
of the mean value. Note that this is the same metric that ASHRAE 14 refers to as
‘CV(RMSE)’ [8]. The traditional statistical definition of ‘coefficient of variation’, or CV, is
the standard deviation of a set of numbers, divided by the mean of that set of numbers.
However, in the ASHRAE definition, the denominator is the mean of the energy data,
rather than the mean of the errors. To avoid confusion with the traditional statistical
terminology, this study uses the term ‘normalized RMSE’ rather than ‘CV(RMSE)’. The



equation for nRMSE is provided in Equation 1, where E; is the actual metered energy
use per unit time, E; is the model prediction, and n is the total number of predictions in
the prediction horizon.

Equation 1:  nRMSE =

The relative bias (relBias) is the mean of the error in the predictions divided by the mean
of the data. A value of 0.1 means that the prediction of the total energy used during the
entire prediction horizon is 10% higher than the actual value; a value of -0.15 means the
prediction is 15% lower. The equation for relBias is provided in Equation 2, where E; is
the actual metered energy use per unit time, E; is the model prediction, and n is the
total number of predictions in the prediction horizon.

n

S(e,-x)

Equation 2: relBias =

Relative to the median relative total error, the median of the absolute relative total
error (med(absRTE)) is a better metric to understand the typical error in the prediction
of total energy use over the prediction horizon. This metric is similar to the more
commonly used “Mean Absolute Percent Error,” but uses the median rather than the
mean to quantify the central tendency. The median is less sensitive to extreme values
which tend to arise from unusual or pathological cases. For instance, if the energy
consumption during a single day is very low (which can happen due to a data recording
error or an equipment malfunction), a small absolute error in the baseline prediction
can lead to an enormous, or even infinite, relative error in the prediction. Calculating
the mean relative total error would allow such days, if present, to substantially affect
the error assessment, but the median is insensitive to them, so we prefer the median
for this application. The equation for med(absRTE) is given in Equation 7, where E; is the
actual metered energy use per unit time, E; is the model prediction, and n is the total
number of predictions in the prediction horizon. Continuing the example above,
suppose a model over-predicts one building by 10% (0.1), gets one exactly right, and
under-predicts another by 10%. The absolute relative total errors are thus 0.1, 0.0, and
0.1, and the median is .1, or 10%.
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The value of relBias is independent of the timescale being evaluated: if the average
hourly energy use is too high by a factor of 1.1, then the average daily, weekly, monthly,
and total energy use will also be too high by that same factor, so this is a measure of the
total error. In contrast, the other metrics quantify the predictive accuracy at the
timescale of the data and predictions: if the predictions and data apply to individual
hours then these metrics summarize the error in the hourly predictions; for monthly
predictions and data, they summarize the error in the monthly predictions. The
numbers can be quite different. For example, imagine that every day half of the hourly
predictions are too high by X kWh, and half are too low by X kWh. The root-mean-
squared error in the hourly predictions would be X kWh, but the root-mean-squared
error in the daily prediction would be 0 kWh.

3. Results

The results that are presented focus on comparative model assessment, using the
metrics deemed most critical to understanding the error in measurement and
verification of building energy savings, that is, NRMSE and median absolute relative total
error. Summary tables for the full set of performance metrics considered in the
methodology are provided in Appendix B.

3.1 Normalized Root Mean Squared Error

The normalized root mean square error for each model, predicted energy quantity, and
training period are summarized in Table 1, which gives the median value when the
model is fit to all of the buildings in the dataset. We use the median rather than the
mean to avoid being influenced by extreme values: as shown in Figure 2, a few of the
buildings are very poorly fit (by all of the models), and using the mean would let those
few buildings dominate the error summary. Since this metric quantifies the typical size
of the error relative to the mean of the data, a value of 0.1, for example, indicates that
errors are typically about 10% of the mean value.

10



Table 1. Median nRMSE for each model, predicted quantity, and training period

Predicted Quantity Relative 6-mo training 9-mo training 12-mo training
Performance period, 10-mo period, 7-mo period, 4-mo
energy prediction | energy prediction | energy prediction
Daily Energy Use Best PROPR. (.16) DTT (.17) LBNL (.13)
DTT (.18) LBNL (.17) PROPR. (.14)
LBNL (.19) MW (.18) DTT (.17)
MW (.20) PROPR. (.19) MW (.18)
Worst CP (.25) CP (.22) CP (.24)
Weekly Energy Use Best DTT (.13) DTT (.10) LBNL (.10)
LBNL (.13) PROPR. (.13) DTT (.12)
PROPR. (.13) LBNL (.14) PROPR. (.12)
MW (.16) CP (.15) MW (.13)
Worst CP (.17) MW (.15) CP (.17)
Monthly Energy Use | Best LBNL (.09) DTT (.08) LBNL (.08)
DTT (.10) LBNL (.09) PROPR. (.10)
PROPR. (.10) PROPR. (.10) DTT (.11)
MW (.14) CP (.11) MW(.12)
Worst CP (.14) MW (.13) CP (.18)

Overall, the LBNL, proprietary, and day-time-temperature models had smaller errors
than that the mean-week and change-point models. The differences between the three
best models were quite small, on the order of a percentage points. Across the entire
study set, the nRMSE from the DTT model ranged from 8-18% of the mean, the nRMSE
from the LBNL model ranged from 8-19% of the mean, and the nRMSE from the
proprietary model ranged from 10-19% of the mean. Monthly energy use was predicted
with the least error, and daily energy was predicted with the most error

Another way to compare performance of models is to plot the errors from one model
versus the errors from another model: for each building, the error from one model
determines the location along the x-axis and the error from another model determines
the location along the y-axis. Points that fall directly on the 45-degree line indicate cases
in which the error is the same for both models; points above or below the line indicate
cases in which one model had higher or lower error than the other. Points near the
lower left corner indicate buildings for which both models resulted in smaller predictive
errors, while those near the upper right correspond to higher predictive errors. Any two
models can be compared using such plots. In Figure 2, the nRMSE for the proprietary
models is compared to that for the LBNL model, for each duration of training period and
each predicted quantity.
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Figure 2: nRMSE of the Proprietary model vs. that of the LBNL model, for each building. Results are
shown for daily, weekly, and monthly energy use predictions (rows) for 6-month, 9-month, and 12-
month training periods (columns).

3.2 Median Absolute Relative Total Error

The median absolute relative total error for each model, training period, and prediction
horizon is summarized in Table 2. To compute this metric, the percent difference
between the total predicted energy use (for the entire prediction period), and the actual
energy use is determined, and the absolute value taken. This is done for each building in
the study, and the median value reported. Therefore, a value of .04 for example, would

12



indicate that the median error in total predicted energy use across the set of 29

buildings was 4% of the actual energy use.

Table 2. Median Absolute Relative Total Error for Each Model, Training Period, and Unit of Prediction

Relative 6-mo training period, 9-mo training period, 12-mo training period,
Performance 10-mo energy prediction | 7-mo energy prediction 4-mo energy prediction
Best MW (.030) DTT (.039) PROPR. (.035)

LBNL (.032) MW (.049) LBNL (.041)

DTT (.034) CP (.052) DTT (.046)

PROPR. (.037) LBNL (.055) CP (.065)
Worst CP (.051) PROPR. (.061) MW(.065)

Across all of the models, training periods and prediction periods, the median absolute
percent error in predicted energy use ranged from 3% to 7%. Interestingly for M&V
applications, the total error was smallest for a shorter training period and a longer
prediction horizon, and was largest when the training period was much longer than the
prediction horizon.

The relative performance of each model was mixed, varying with the training period and
prediction horizon. Across the three different training and prediction periods, median
absolute percent errors for the models were:

Day-time-temperature model, 3-5%

LBNL model, 3-6%

Proprietary model, 4-6%

Mean-week model, 3-7%

Change-point model, 5-7%

4. Discussion

In interpreting the study results, the focus of the discussion is the relative performance
of the five baseline models according to key fitness metrics, compliance with ASHRAE
Guideline 14, and implications concerning the use of these models for whole-building
M&YV applications.

4.1 Relative Model Performance

Given the limited dataset and the non-representative nature of the data, widely
generalizable conclusions cannot be drawn. However, the results of the study do
indicate that the proprietary model, LBNL model, and day-time-temperature (DTT)
models perform very similarly with respect to the statistical metrics considered in this
evaluation. They tend to out-perform the change-point and mean-week models, but on
average performed equally well relative to one another. Like all of the models, they
both perform poorly on those buildings whose energy use varies in ways that aren’t
predictable from the outdoor temperature or the time of the week. The current dataset

13



is too small to determine whether certain building sizes or types tend to have more
unpredictable energy usage.

Although the change-point and mean-week models performed worse than the others on
average, even the mean-week model performed surprisingly well in an absolute sense.
For instance, when a 12-month training period was used, and predictions were for
monthly energy consumption the median nRMSE for the mean-week model was 12%,
but the proprietary and LBNL models had errors nearly as large, at 10% and 8%. The
mean-week model also fared within a few percentage points of the other models in
terms of median percent error in total predicted energy use.

It does not appear, however, that the somewhat poorer performance of the mean-week
model is simply a statistical artifact due to the small sample size - unlike the difference
between the LBNL and proprietary models, which might be. One indication of the
inferiority of the mean-week model is that the poorer performance carries across all
lengths of training periods and over predictions for days, weeks, and months.
Conversely, the LBNL, DTT, and proprietary models often switch ranks on the various
metrics and various analyses. Furthermore, the mean-week model does not contain any
temperature information at all, so there is a strong expectation that it will not perform
as well as the other models. The change-point model also does not perform as well as
the proprietary, LBNL, and DTT models.

In terms of the median absolute percent error in total energy use over the full
prediction horizon, the relative performance of each model was mixed, and depended
on the length of the training period and prediction horizon. The difference between the
LBNL, proprietary, and DTT models was only a couple of percentage points, and typical
errors ranged from only 3-6% across the three cases considered.

In addition to the models’ ability to accurately predict daily, weekly, monthly, and total
energy use, the study also evaluated correlation between model predictions and
metered data. Again, the LBNL, proprietary, and DTT models all vastly outperformed the
change-point and mean-week models - the months, weeks, and especially days that for
which the models predicted high energy use did indeed have high metered energy use,
and vice versa.

4.2 Model Compliance with ASHRAE Guideline 14
ASHRAE Guideline 14 [8] defines two quantitative requirements for whole-building
M&V:

1. Guideline 5.2.10 requires a ‘net determination bias’ less than 0.005%. Net
determination bias is defined as the sum of the prediction errors divided by the
sum of the load data (and multiplied by 100 to make a percent), where the sum
is over the entire baseline period.

14



2. Guideline 5.3.2.1e states “The baseline model shall have a maximum CV(RMSE)
of 20% for energy use and 30% for demand quantities when less than 12 months
of post-retrofit data are available for computing savings. These requirements are
25% and 35%, respectively, when 12 to 60 months of data will be used in
computing savings.”

The first requirement is notably restrictive, in that it severely limits the range of
approaches that can be used for creating baselines. The LBNL, mean-week, change-
point, and day-time-temperature models all meet this criterion, which was one factor in
including them in the study. LBNL did not have access to predictions from the
proprietary model training period, and as such was not able to validate compliance. One
limitation of this requirement is that even reasonable modifications that would likely
improve model performance could result in non-compliance. For instance, since building
performance changes with time, it might make sense to give more statistical weight to
later data points than to earlier ones, however Guideline 5.2.10 essentially requires all
points to be weighted equally. This requirement is particularly restrictive, considering
that an alternative method for creating baseline predictions — calibrated whole-building
simulation — allows 5% bias, a factor of 1000 higher than is allowed with statistical
approaches.

Both requirements one and two are based on comparing the model’s predictions to the
data that were used to fit the model, that is, data from the training period. As such,
neither is amenable to independent validation in a strict sense: a modeler can always
make post-facto adjustments to force compliance. Although LBNL did not have access to
predictions from the proprietary model’s training period, and therefore was unable to
validate compliance, we note that when applied to data that were not used to fit the
model, the proprietary model was no more biased than the other models. Although it
was not possible to independently test whether the proprietary complied with these
requirements, the study results indicate that in general, the it predicted energy use
more accurately than the change-point models. In turn, well-fit change-point models are
one of the best-practice modeling approaches referenced in Guideline 14.

The ability to accurately predict energy use beyond the training period is in many
respects, a more relevant test of the real-world usefulness (and lack of bias) in the
model. While the Guideline 14 requirement 5.3.2.1e refers to the training period, for the
prediction period, the LBNL model, day-temperature-time model, and proprietary model
all comfortably met required threshold for most of the buildings in the test data set; all
failed to meet the requirement for the most unpredictable buildings. For monthly
energy use predictions, which Guideline 14’s whole-building discussion is centered
upon, the three top performing models far exceeded the 20% threshold requirement,
with median values of 8-11%.

5. Conclusion

The methodology developed and applied in this work comprises the first step in
establishing a general approach to evaluate the predictive accuracy of whole-building
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baseline models, which is a critical component of the uncertainty in the measurement
and verification (M&V) of gross, whole-building energy savings. This methodology relies
upon aggregating interval meter data from a number of buildings into a testing data set,
and applying cross validation to compare model predictions to metered building energy
data. The test data set is divided into a block of model training data, and a block of
prediction data that follows the training period in time. Model performance is then
evaluated using a number of statistical metrics, of which two, normalized root mean
squared error and median absolute relative total error, were judged most critical to the
consideration of uncertainty in determining energy savings. (Other performance metrics
included in the methodology, such as correlation coefficient may by be more useful for
other analysis methods that depend on baseline models, such as anomaly detection.) By
varying the training and prediction periods it is possible to quantify model performance
relative to diverse pre- and post-measure periods, which influence the time required to
quantify energy savings. By varying the unit of energy prediction, for example, daily, vs.
weekly, vs. monthly total energy use, one can also judge how errors change with
different ‘reporting intervals’ that might be used by owners or program mangers to
track savings as an efficiency project progresses over time.

This is a general methodology that can be applied to proprietary or ‘open” models, and
to system-level and submeter data and models. The training and prediction time periods
may be adjusted.

To demonstrate and validate this methodology, and gain insights regarding the
performance of interval meter data, five models were evaluated against a set of testing
data from 29 buildings, spanning a diversity of climates, sizes, and geographical
locations. Since this data set was relatively small, and not fully representative, widely
generalizable conclusions regarding model performance cannot be established.
However, several findings relevant to questions of the time requirements and accuracy
of whole-building M&V resulted from this demonstration, and suggest topics for deeper
exploration in future research.

Error was reduced with more resolved models that account for time: The change-point
models, which do not take time into account, were outperformed by each of the more
sophisticated models that explicitly include time as an independent variable. This has
important implications for whole-building M&YV, as change-point models have
historically served as an industry standard. The increasing availability of interval meter
data, with associated time-stamp information therefore has the potential to improve
the accuracy of whole-building M&V.

Traditional rules of thumb may be overly conservative for today’s improved models: The
IPMVP recommends that whole-building approaches be limited to cases where savings
are greater than ten percent [2]. However, for the top three performing models in this
study, the median absolute error in total metered energy use over all training periods
and prediction horizons considered ranged from three to six percent, suggesting that
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some models may be able to resolve whole-building savings of less than ten percent,
particularly if pre-screening is used to target buildings that the baseline model
characterizes with a high degree of fitness. It is possible that the buildings in the present
study are more predictable than typical buildings; full investigation of this issue will
require a larger dataset, ideally one that is statistically representative of a class of
buildings (such as all commercial buildings in a given climate zone).

A longer baseline period does not guarantee lower error: Interestingly for M&V
applications, the total error was smallest for a shorter training period and a longer
prediction horizon. In contrast to naive expectations, a longer training period does not
necessarily lead to a model that makes better predictions: a building’s energy behavior
changes from month to month — hours of operation are altered, equipment is replaced,
employees may be added or removed — so extending the training period to include data
from eight or ten months ago may not improve the model and in fact may make it
worse. When the only available data were monthly billing data, long training periods
were needed in order to determine how energy consumption varies with temperature
because it was necessary to include both hot and cold months; with interval data, a few
hot days and cold days can be sufficient, and these may occur in a span of just a few
months.

Aggregation of energy predictions into larger ‘chunks’ can reduce error: Not surprisingly,
monthly energy totals were predicted with less error than daily or weekly energy totals,
which is probably good news for M&YV since savings are not typically reported or tracked
on a daily or weekly basis.

6. Future Work

Building energy use changes with time for several reasons: operational changes such as
operating hours and thermostat settings; equipment changes such as replacement of
lights and office equipment; changes in occupancy or in occupant behavior; and external
factors such as outdoor air temperature and humidity. Baseline model prediction errors
therefore depend on both how well the model makes use of the explanatory variables
available to it, and on how much variation is caused by factors not explicitly included in
the model. Whole-building baseline models are typically based only outdoor
temperature and humidity, so the effect of the other sources of variation of energy
consumption is not captured. If a model does not make proper use of its input data, the
model can be improved; but if the building’s energy consumption varies due to factors
that are not provided as inputs to the model, the result is error that no model
improvement can fix. The present paper reports on the accuracy of several models
when applied to one set of buildings, using outdoor air temperature as the only
explanatory variable.

Our future work on quantifying the performance of baseline models will focus on (1)

compiling larger, statistically representative datasets, and (2) using those data sets to
explore the possibility of identifying types of buildings that are more predictable than
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others; this would allow screening of buildings to identify candidates for energy savings
measures whose effectiveness can be reliably quantified through whole-building M&V.
We also hope to (3) develop a formal methodology to evaluate the suitability of models
for M&V (as applied to a given set of buildings) and (4) develop a way to determine
what performance criteria must be met in order to meet the needs of a given M&V
incentive program — for instance, 6-month energy use must be predictable in at least
50% of buildings to within 5%, and in 85% of buildings to within 8%.
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Appendices

Appendix A: Additional Statistical Performance Metrics Included in the Baseline
Performance Evaluation Methodology

The correlation coefficient (r) quantifies the extent to which high predictions are
associated with high data values, and low predictions are associated with low data
values. A value of one indicates that predictions and data are perfectly related by a
linear transformation, whereas a value of zero indicates no linear relationship between
the predictions and the data. A value of negative one indicates that the data and the
predictions are perfectly related by a linear transformation, but that high predicted
values map to low data values, and vice versa. A r value does not necessarily indicate
accuracy: if the predictions are exactly equal to 10 times the data, plus 1000, they are
very inaccurate but the correlation is perfect. The equation for r is provided in Equation
1, where E, is the actual metered energy use per unit time, E; is the model prediction,

E is the mean of the metered energy use per unit time, E is the mean of the model
prediction, and n is the total number of predictions in the prediction horizon.

Equation A.1: r il

The root mean squared error (RMSE) quantifies the typical size of the error in the
predictions, in absolute units. In this study, mean kW was used as a convenient unit to
avoid the fact that different months have different numbers of days; since power is
energy per unit time, conversions between energy and power simply only required
simple multiplication or division by a constant. The equation for RMSE is provided in
Equation 2, where E, is the actual metered energy use per unit time, E; is the model

prediction, and n is the total number of predictions in the prediction horizon®.

Equation A.2: RMSE =

*To quantify the RMSE of a model's predictions during the training period, i.e., relative to the data used to
fit the model, the denominator of the equation is (n-p), where p is the number of parameters in the
model. In contrast, the denominator is n when quantifying the model fit for the prediction period, as is
the case with the cross-validation approach used in this study.
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The normalized mean absolute error (nMAE) is the mean absolute error divided by the
mean of the data. This metric is similar to nRMSE, but places less emphasis on extreme
values. The equation for nMAE is provided in Equation 4, where E, is the actual
metered energy use per unit time, E;is the model prediction, and n is the total number
of predictions in the prediction horizon.

E‘E -k,

i=1

Equation A.3: nMAE= — 1L

2(E)

i=1

n

The median relative total error (medRTE) indicates whether the model has a systematic
tendency to over- or under-predict. Suppose a model over-predicts one building by 10%
(0.1), gets one exactly right, and under-predicts another by 10%. The relative total errors
are thus 0.1, -0.1, and 0.0. The median of these is 0; that suggests that the modeling
approach does not have an overall bias, but is not a good way of quantifying the typical
error. The equation for medRTE is provided in Equation 6, where E, is the actual
metered energy use per unit time, E; is the model prediction, and n is the total number
of predictions in the prediction horizon.

Equation A.4: medRTE = median (’T

The final metric, quantiles of residuals (2.5%,10%, 50%, 80%, 97.5%), are helpful in
characterizing the statistical distribution of the residuals, rather than just their typical
size, as is true of the mean and median error metrics.
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Appendix B: Detailed Results, Statistical Performance Metrics

Detailed statistical performance metrics for each of the baseline models are provided in
Tables B1- B10. Tables B1-B3 summarize the median model performance for daily
energy use predictions, Tables B4-B6 correspond to weekly energy predictions, and
Tables B7-B9 correspond to monthly energy predictions. Table A10 summarizes the
relative total error for each model, training period, and prediction horizon.

Table B1. Model performance over the entire data set, daily energy predictions, 6-month training
period, 10-month prediction horizon. Several goodness-of-fit metrics are shown, as well as quantiles of
relative error over the entire prediction period.

Model r nRMSE | relMAE | relTotErr 2.50% 10% 50% 90% | 97.50%
PROPR. 0.765 0.157 0.116 0.011 -0.198 -0.125 0.013 0.151 0.398
LBNL 0.779 0.189 0.131 -0.008 -0.2 -0.115 -0.007 0.169 0.326
DTT 0.716 0.178 0.124 0.012 -0.203 -0.113 0.009 0.178 0.312
CpP 0.189 0.245 0.206 0.016 -0.382 -0.235 0.003 0.321 0.446
MW 0.483 0.204 0.162 0.009 -0.324 -0.174 0.008 0.174 0.297

Table B2. Median model performance over entire data set, daily energy predictions, 9-month training
period, 7-month prediction horizon. Several goodness-of-fit metrics are shown, as well as quantiles of
relative error over the entire prediction period.

Model r nRMSE | relMAE | relTotErr 2.50% 10% 50% 90% | 97.50%
PROPR. 0.743 0.178 0.12 0.026 -0.196 -0.125 0.012 0.189 0.325
LBNL 0.753 0.172 0.133 0.013 -0.204 -0.114 0.011 0.183 0.334
DTT 0.746 0.171 0.129 0 -0.211 -0.118 -0.004 0.183 0.302
CpP 0.006 0.217 0.186 -0.013 -0.328 -0.223 -0.042 0.285 0.389
MW 0.558 0.177 0.124 -0.012 -0.222 -0.113 -0.008 0.132 0.207

Table B3. Median model performance over entire data set, daily energy predictions, 12-month training
period, 4-month prediction horizon. Several goodness-of-fit metrics are shown, as well as quantiles of
relative error over the entire prediction period.

Model r nRMSE | relMAE | relTotErr 2.50% 10% 50% 90% | 97.50%
PROPR. | 0.731 0.144 0.108 -0.008 -0.219 -0.146 -0.012 0.13 0.263
LBNL 0.795 0.13 0.099 -0.013 -0.196 -0.131 -0.007 0.14 0.247
DTT 0.741 0.167 0.119 -0.01 -0.176 -0.112 -0.006 0.158 0.279
CpP 0.088 0.238 0.191 -0.036 -0.343 -0.294 -0.057 0.249 0.353
MW 0.743 0.18 0.153 -0.011 -0.195 -0.121 -0.02 0.097 0.146
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Table B4. Median model performance over entire data set, weekly energy predictions, 6-month training
period, 10-month prediction horizon. Several goodness-of-fit metrics are shown, as well as quantiles of

relative error over the entire prediction period.

Model r nRMSE | relMAE | relTotErr 2.50% 10% 50% 90% | 97.50%
PROPR. | 0.489 0.131 0.103 0.011 -0.164 -0.092 0.01 0.139 0.229
LBNL 0.558 0.13 0.109 -0.008 -0.128 -0.097 0.004 0.129 0.196
DTT 0.524 0.125 0.099 0.012 -0.13 -0.085 0.008 0.109 0.202
CpP 0.193 0.174 0.139 0.016 -0.228 -0.142 0.029 0.169 0.262
MW 0.289 0.164 0.13 0.009 -0.213 -0.118 0.011 0.156 0.243

Table B5. Median model performance over entire data set, weekly energy predictions, 9-month training
period, 7-month prediction horizon. Several goodness-of-fit metrics are shown, as well as quantiles of

relative error over the entire prediction period.

Model r nRMSE relMAE relTotErr 2.50% 10% 50% 90% | 97.50%
PROPR. 0.349 0.134 0.104 0.026 | -0.136 | -0.104 0.015 0.128 0.208
LBNL 0.518 0.136 0.106 0.013 -0.152 | -0.079 0.014 0.125 0.19
DTT 0.652 0.102 0.09 0 -0.14 | -0.098 | -0.004 0.114 0.169
CpP 0.001 0.151 0.114 -0.013 -0.2 | -0.135 | -0.022 0.115 0.237
MW 0.293 0.152 0.108 -0.012 -0.132 | -0.085 0.002 0.108 0.159

Table B6. Median model performance over entire data set, weekly energy predictions, 12-month
training period, 4-month prediction horizon. Several goodness-of-fit metrics are shown, as well as
quantiles of relative error over the entire prediction period.

Model r nRMSE | relMAE | relTotErr 2.50% 10% 50% 90% | 97.50%
PROPR. 0.358 0.12 0.098 -0.008 -0.129 -0.091 -0.034 0.142 0.226
LBNL 0.491 0.101 0.08 -0.013 -0.104 -0.079 -0.012 0.077 0.148
DTT 0.64 0.117 0.087 -0.01 -0.074 -0.066 -0.011 0.093 0.128
CpP 0.125 0.17 0.138 -0.036 -0.188 -0.14 -0.049 0.083 0.195
MW 0.396 0.132 0.108 -0.011 -0.085 -0.08 -0.014 0.054 0.116
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Table B7. Median model performance over entire data set, monthly energy predictions, 6-month
training period, 10-month prediction horizon. Several goodness-of-fit metrics are shown, as well as
quantiles of relative error over the entire prediction period.

Model r nRMSE | reIMAE | relTotErr 2.50% 10% 50% 90% | 97.50%
PROPR. 0.699 0.1 0.087 0.011 -0.072 -0.055 0.017 0.09 0.124
LBNL 0.669 0.091 0.076 -0.008 -0.092 -0.065 0 0.067 0.126
DTT 0.687 0.096 0.078 0.012 -0.068 -0.052 0.01 0.104 0.116
CpP 0.413 0.143 0.107 0.016 -0.142 -0.082 0.013 0.131 0.162
MW 0.139 0.141 0.118 0.009 -0.122 -0.102 0.005 0.115 0.162

Table B8. Median model performance over entire data set, monthly energy predictions, 9-month
training period, 7-month prediction horizon. Several goodness-of-fit metrics are shown, as well as
quantiles of relative error over the entire prediction period.

Model r nRMSE | reIMAE | relTotErr 2.50% 10% 50% 90% | 97.50%
PROPR. 0.478 0.104 0.096 0.026 -0.08 -0.057 0.012 0.072 0.129
LBNL 0.626 0.092 0.079 0.013 -0.061 -0.05 -0.004 0.06 0.084
DTT 0.603 0.082 0.076 0 -0.06 -0.046 -0.003 0.058 0.068
CpP -0.008 0.106 0.083 -0.013 -0.096 -0.078 -0.022 0.063 0.089
MW 0.495 0.127 0.102 -0.012 -0.076 -0.06 -0.007 0.054 0.067

Table B9. Median model performance over entire data set, monthly energy predictions, 12-month
training period, 4-month prediction horizon. Several goodness-of-fit metrics are shown, as well as
quantiles of relative error over the entire prediction period.

Model r nRMSE | relMAE | relTotErr 2.50% 10% 50% 90% | 97.50%
PROPR. 0.892 0.104 0.096 -0.008 -0.095 -0.078 -0.029 0.074 0.094
LBNL 0.949 0.082 0.078 -0.013 -0.093 -0.071 -0.014 0.037 0.063
DTT 0.92 0.107 0.09 -0.01 -0.069 -0.045 -0.002 0.068 0.074
CpP 0.401 0.183 0.143 -0.036 -0.108 -0.095 0.028 0.201 0.241
MW 0.908 0.124 0.118 -0.011 -0.08 -0.041 0.019 0.071 0.096

Table B10. Median Relative Total Error for each model, predicted quantity, and training period. Several
goodness-of-fit metrics are shown, as well as quantiles of relative error over the entire prediction

period.
Relative 6-mo training period, 9-mo training period, 12-mo training period,
Performance 10-mo energy prediction | 7-mo energy prediction 4-mo energy prediction
Best LBNL (-.008) DTT (.000) PROPR. (-.008)

MW (.009) MW (-.012) DTT (-.010)

PROPR. (.011) LBNL (.013) MW (-.011)

DTT (.012) CP (-.013) LBNL (.013)
Worst CP (.016) PROPR. (.026) CP (.036)
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Appendix C: Building Characteristics

Table C-1 summarizes the known characteristics for the buildings that were included in

this study. Commercial building type is provided for 25 of the 29 buildings, and floor
area for 14 of the 29 buildings.

Table C-1. Floor area and commercial type for buildings included in the study

Location Area (sf) Building Type
Northern Alberta, CA 2,000 | Restaurant
Southern British Columbia, CA 11,850 | Mixed-use campus building
Southern British Columbia, CA 19,400 | Mixed-use campus building
Southern Quebec, CA 97,450 | Mixed-use campus building
Southern Quebec, CA 96,250 | Mixed-use campus building
Southern Quebec, CA 200,000 | Mixed-use campus building
Southern Quebec, CA 86,200 | Mixed-use campus building
Southern British Columbia, CA 1,300 | Restaurant
Southwestern North Carolina, US 15,622 | Office building
Southern Florida, US 7,700 | Office building
Western Washington, US 12,000 | Office building
Northern CA, US 20,000 | Office building
Southern British Columbia, CA 206,400 | Sports Complex
Southern British Columbia, CA 15,670 | Restaurant

Northwestern Oregon, US

Office building

Northwestern Oregon, US

Office building

Northwestern Oregon, US

K-12 school

Southeastern Minnesota, US

Sports Complex

Northwestern Oregon, US

Office building

Northern Central Colorado, US

University dormitory

Southern Idaho, US

K-12 school

Southern Idaho, US

K-12 school

District of Columbia, US

Office building

District of Columbia, US

Office building

Southern Idaho, US

Hospital
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